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J .  Phys. A: Math. Gen. 19 (1986) L1117-L1;23. Printed in Great Britain 

LE'ITER TO THE EDITOR 

On representations of an operator algebra and the transfer 
matrix spectrum of the q-state Potts model 

P P Martin 
Department of Theoretical Physics, University of Manchester, Manchester M13 9PL, U K  

Received 1 August 1986 

Abstract. We show that the Potts and Temperley-Lieb representations of the projection 
generators of a von Neumann algebra are, in general, reducible. We write down a new 
representation with non-vanishing product of odd generators R and give evidence that it 
is a common element in these reductions. The operators in this representation may be 
interpreted as giving the bond transfer matrices of the square lattice Whitney polynomial. 

We show that the reduction of the Temperley-Lieb representation also contains irreduc- 
ible representations with R = 0 which are responsible for eigenvalues in the ice-model 
spectrum independent of those of the Potts model. 

In this letter we report some recent work on the use of operators obeying algebraic 
relations associated with the projection generators of von Neumann algebras (Jones 
1983) in relating the transfer matrix spectra of statistical mechanical models. In 
particular we explain the limitations of the relationship between the square lattice 
Potts and staggered ice-type models (compare Baxter (1982a) with Baxter (1982b) and 
Martin (1986)). The transfer matrices for these models are constructed from different 
representations of the same algebra (Temperley and Lieb 1971, Baxter 1982a). We 
review this construction and then show that both representations are reducible and 
have some, but not all, component irreducible representations in common. We show 
in general that the eigenvalues of representations of operator products, such as these 
transfer matrices, are only determined by the algebraic relations when the product of 
odd generators R is non-vanishing in an irreducible representation. We show in 
particular that R = 0 representations give rise to different eigenvalues in Potts and 
ice-type models. We then write down a new R # 0 representation which generates the 
transfer matrix for the square lattice Whitney polynomial (or dichromatic polynomial 
(Baxter 1982a, Blote and Nightingale 1982)) and give evidence that it is equivalent to 
the irreducible R # 0 element in the Potts and Temperley-Lieb representations. 

The n-site layer transfer matrix for the square lattice q-state Potts model may be 
written 

where U = exp(p)  - 1 (Baxter 1982a). 
The matrices {U, ,  i = 1,2n - 1) are given by 

U2,-l= I x I x . .  . x A x . .  . X  I (2) 

0305-4470/86/ 181 117 + 07%02.50 @ 1986 The Institute of Physics L1117 



L1118 letter to the Editor 

(where I, ,  = a,, and AJk = q-”2, with j ,  k = 1,.  . . , q and A appearing in the ith position 
in the cross product) and similarly 

9-1 

r = O  
U,, = q-”2  2 B3(r )B ,+ l ( r ) i  

where 
B , ( r ) =  I x Ix.. . X  C ( r ) x . .  . X I  

and 

(3) 

These matrices satisfy the following relations (for projection generators of a von 
Neumann algebra-see, for example, Jones (1983); see also Temperley (1986)): 

u,u, = ql/2ul 

U,U,IIU, = U, 

UIUJ = qu, I i - j l ~  2. (4) 

An alternative set of matrices satisfying these relations, given by Temperley and Lieb 
(1971) (see also Baxter 1982a), may be written as 

U2,-l = 1,x I 4 x . .  . x U x . .  . x I ,  

U,, = I ,  x I4 x . . . x I 2  x U x I 2  x . . . x I4 

( 5 )  

(6) 

or equivalently 

U , = l , x I , x  . . .  x u x  . . .  X I 2  

where 

appears in the ith position, I,,, is the m x m unit matrix and s , + s - ~ =  q‘” (we make 
no notational distinction between representations). If these matrices are used in 
equation (1) we obtain the transfer matrix for the medial lattice staggered ice model. 

It is easy to see that the two versions have some eigenvalues in common. The scalar 
4 x 1  in 

RxR = r ( x ) R  (7)  

(where R = ni,l,n U2i-l and x is any sum of products of U and 1) is determined by 
the von Neumann relations (4) (see Baxter 1982a). However, we now know that the 
equivalence between the ice and Potts models does not extend to all eigenvalues (it 
does not necessarily include the largest eigenvalue, for instance, see Baxter (1982b) 
and Martin (1986)). To understand the extent of the equivalence we must examine 
representation structure of operators satisfying the relations (4). In particular, we must 
decompose the known representations into their irreducible parts and classify these 
in terms of R, since when R = 0 equation (7) provides no constraint on the spectrum 
of x. 
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The reducibility of the Potts representation, for example, is conveniently exemplified 
in the q = 3 case. Consider the change of basis effected by the similarity transformation 
matrix: 

Y = S x S x  . . .  x s  (8) 
where 

I 1  

- 1  1 

The representation becomes 

and 
U Z i =  I , x  I , x . .  . x  D x . .  . X  I ,  (9) 

where 
\ 

f 0 0 0 O O O A  
o f o f  -- : , o o o &  
o o f o  0 ; f ; o  
o i o f  - -  : , o o o "  

_ _ _  
9 3 9  
1 1 1  
6 2 6  

3 0 3  $ 0 0 0 4  

Because the block diagonal structure of D is invariant under cyclic permutation of 
elements in the cross product the representation decomposes. Note that only one 
component has R # 0 and that there can only be one irreducible component with R # 0. 
The R # 0 component at this stage has dimension d,, where d,  = 2 and d, = 3d, - ,  - 1. 
However, this component is itself reducible. The required basis cannot be expressed 
simply in terms of cross products, but the final reduced dimension d;, of the R # 0 
component can be found as follows. By cyclically permutating the order of elements in 
the cross product (9) a U,, and U * ,  + I  can be obtained from the d,-dimensional 
matrices. This provides the representation for n + n + 1 (see (4)),  so that d,, = d , - ,  
(equivalently for q = 2, of course, the reduced dimension en = 2P,-1 with P = 1). 

The decomposition of the Temperley-Lieb representation is not so straighforward. 
We can, however, make an initial reduction into a direct sum of 2 n  + 1 representations 
of dimension ( 2 n )  !/m ! ( 2 n  - m )  ! ( m  = 0, . . . , 2 n ) .  This can be seen by considering a 
basis in which, schematically, entries in the template matrix 

M = F x  F X  . . .  X F  
where 
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0 
1 U ,  = 91'2 

0 
0 

are collected into blocks, each of whose elements have the same aggregate subscript. 
In ice-model notation this is the basis in which fixed numbers of up (down) arrows 
are grouped together (see Baxter 1982a). 

Writing the odd operators in the form 

U 2 ! - ,  = E,,  x E j 2  x . . . x E,,  

E,, = E;@ E;@ E ;  

(11) 

where 

with 
E ;  = 1 -a,, 

and 

we then see that the only representation with R # 0 is that of dimension (2n) !/(n !)* 
(with zero aggregate subscript in the above scheme, i.e. corresponding to the direct 
sum of terms in the expansion of (11) with equal numbers of E' and E - ) .  This 
representation is further reducible, but the appropriate basis is rather complicated in 
general. We can best illustrate the situation with some finite lattice examples. 

Consider the smallest non-trivial case, n = 2 .  Here we have (for 9 # 2 )  a basis in 
which 

9 - 1  
9 - 1  

1 1 9 - 2  
1 
1 

1 
1 1 9-2 

9 - 2  
0 

It is easy to see, for example from (9), that in this case all three irreducible representa- 
tions are also found in the decomposition of the Potts representation. This is not true 
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in general. For example, at q = 2 the similarity transformation used above becomes 
singular, and  instead we find (with U ,  and U, as above) 

U, = q - ” 2  \ Ki’ (13) 

0 0 0 0  

The first two 2 x 2 blocks on the diagonal in fact give two irreducible representations. 
These also appear in the Potts representation, thus giving, in this case, the full Potts- 
model spectrum (clearly, equivalent representations have the same spectrum irrespec- 
tive of the value of R ) .  

The remaining elements only give a representation when taken in conjunction with 
the second block (although they d o  not interfere with the algebra of this block). This 
‘parasitic’ representation does not appear in the decomposition of the Potts representa- 
tion and is responsible for independent eigenvalues in the ice-model spectrum. It also 
precludes the existence of a basis in which we simply have a direct sum of irreducible 
representations (cf group representation theory). 

The situation for n = 3 is similar but algebraically more complicated. However, 
having already shown that inequivalent representations with independent spectra can 
and d o  appear in the two models, we should now consider the extent of common 
ground between them. To this end, as we will see, it is not necessary to consider 
individual cases. It is possible to check from (1 1) that the Temperley-Lieb representa- 
tion, like the Potts representation, contains only one irreducible representation with 
R # 0. We wiil show below that all irreducible representations ( p )  with R,  # 0 have 
the same dimension and  give the same spectrum for a given x (defined as in (7) ) .  We 
will then show how to construct such representations much more directly. 

Firstly note that any x, may be written x , ( E )  l o = o ,  where the coefficients of the 
characteristic polynomial depend continuously on E and where, for any finite E ,  we 
have a x , ( E )  with no symmetries, i.e. whose eigenvalues are all different roots on the 
same Riemann surface (Phillips 1957). All the eigenvalues of x, ( E )  are then determined 
from a knowledge of one. Now since R # 0 one eigenvalue is determined independently 
of p, thus all are determined and by continuity all are determined for x,. 

Now consider the following construction. Labelling the rows and columns of 
matrices by the possible connectivities (Blote and Nightingale 1982) of n sites then 

( Uz,-,),k = ql” if disconnecting the ith site changes the connectivity from j to k 

= O  otherwise 

and 
( = q s , h - 1 / 2  if connecting the ith and  ( i  + 1)th sites changes the 

connectivity from j to k 
= O  otherwise. 

It is easy to see that these matrices obey the relations (4). The representation dimension 
C,, is given by the number of connectivities 

c, = 1 
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4n -2  
n + 1  c, =- C n - I  

(Blote and Nightingale 1982), and clearly R # 0. If this representation is used in ( 1 )  
we obtain the n-site layer transfer matrix for the square lattice Whitney polynomial, 
with each individual factor an appropriate bond transfer matrix. 

As far as we have checked (up to n = 5 )  this representation is irreducible for general 
q, except at q = 1,2 ,3  where the R # 0 component is equivalent to that contained in 
the reduction of the Potts representation (although, as in (13) ,  the decomposition 
cannot be written as a direct sum). In the q = 3  case the new representation only 
becomes reducible at n = 5, corresponding to the divergence of from C, at that point. 

In fact, these observations are consistent with Temperley's (1986) Young tableaux 
construction. The dimensionality Cn is equal to the (q-independent) number of allowed 
tableaux with two equal rows (compare Blote and Nightingale (1982) with Temperley 
(1986): (2n) !/( n !)' also gives the total number of allowed tableaux). But is its possible 
to see that the construction breaks down for the corresponding representation at 
n + 1 = .rr/cos-'(Jq/2) (O< q s 4) and for other representations at n = rr/cos-'(Jq/2). 
This picks out q = 1,2 ,3  as special cases at precisely the right n values. Of course, as 
n increases it also picks out the other (non-integer) Beraha numbers (Baxter 1982a), 
but as these have no Potts model interpretation their significance is less clear. It is 
presumably de rigueur to conjecture that these models at criticality are part of the 
conformal series (see, for example, Friedan et a1 1984). Certainly the relations (4) are 
closely related to the algebra used by Schultz et a1 (1964) when q = 2. We will discuss 
this aspect elsewhere. 

The asymptotic behaviour for large n of the dimensions of these representations 
may be summarised as follows: 

q-state Potts = q" 

two-state Potts (reduced) 

Temperley- Lieb = 4" 

p ,  = 2-1 
three-state Potts (reduced) d;, -3n-l-ln2/ln3 

Whitne y c, - 4 n - (3 /2  In 4 )  In n +0( 1 ) 

I I - ( q -4 ) /41n4)n+O( ln  n )  
= 9  

(for q = 4). 
The latter result is yet another example of the special nature of q = 4 when q is thought 
of as a continuous variable (Baxter 1982a). 

Note that the reduced two- and three-state cases give, in the limit, the internal 
symmetry factors we expect. Spatial symmetries only appear at the level of the full 
transfer matrix, i.e. when all sites are summed over (see Schultz et a1 1964, Martin 
1986). We observe also that, although R # 0 representations must give rise to the same 
spectrum even if inequivalent, the ones we have found are in fact equivalent. 

Finally, note that R may be interpreted as corresponding to a particular boundary 
condition (see Baxter 1982a) in a particular representation and, although operator 
products corresponding to different boundary conditions may be constructed, R is the 
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only one for which equations of the form of (7) (characterised by a purely scalar 
dependence on ,y on the right-hand side) can be formed. In this sense any coincidence 
of transfer matrix eigenvalues between Potts and  ice models outside the R # 0 irreduc- 
ible subspace (for example, due  to the occurrence of equivalent R = 0 representations) 
is accidental. 

We have found that the relations (4) obeyed by matrices used to construct the Potts 
and ice-model transfer matrices only define their spectra subject to a further condition 
( R ,  # 0) which is satisfied for part but not all of the spectrum in each case. Elsewhere 
the possibility of independent eigenvalues exists and is realised. We have given evidence 
that the further condition is, in general, satisfied by a new set of matrices which generate 
the transfer matrix for the Whitney polynomial. Our next step is to generalise the 
algebra for periodic boundary conditions, where exact finite lattice calculations (Martin 
1986) indicate that the overlap of eigenvalues between Potts and ice models is even 
more restricted. 
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